Dear Author,

Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile them in a separate list. Note: if you opt to annotate the file with software other than Adobe Reader then please also highlight the appropriate place in the PDF file. To ensure fast publication of your paper please return your corrections within 48 hours.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions.

Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the proof.

<table>
<thead>
<tr>
<th>Location in article</th>
<th>Query / Remark: Click on the Q link to find the query’s location in text Please insert your reply or correction at the corresponding line in the proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>The affiliation ‘b’ seems to be two different affiliations. Please check and split it into two if necessary.</td>
</tr>
<tr>
<td>Q2</td>
<td>Please confirm that given names and surnames have been identified correctly.</td>
</tr>
</tbody>
</table>

If you have no corrections to make to the PDF file, please check this box or indicate your approval.

Thank you for your assistance.
Highlights

- Progesterone and allopregnanolone, are neuroprotective after spinal cord injury.
- Neuroprotection by progesterone does not require its 5 α-reduction.
- Neuroprotection by progesterone requires the expression of the intracellular PR.
- Neuroprotection by allopregnanolone involves the modulation of GABA\(_A\) receptors.
- Targeting PR or modulating GABA\(_A\) receptors should be considered for neuroprotection.
Neuroprotection by steroids after neurotrauma in organotypic spinal cord cultures: A key role for progesterone receptors and steroidal modulators of GABA_A receptors

Florencia Labombarda^{a,b}, Abdel Moumen Ghomari^a, Philippe Liere^a, Alejandro F. De Nicola^b, Michael Schumacher^a, Rachida Guennoun^a

^aUMR 788, INSERM and University Paris Sud, 80 rue du Général Leclerc, 92276 Kremlin-Bicêtre, France
^bLaboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental and Department of Human Biochemistry, University of Buenos Aires, Argentina

1. Introduction

Progesterone, with its proven clinical safety (Wright et al., 2007; Xiao et al., 2008) and its efficacy as a neuroprotective factor (De Nicola et al., 2009; Gibson et al., 2009; Schumacher et al., 2007a, 2007b; Stein, 2001) may become one of the effective therapies for nervous system injuries. We have previously shown that progesterone has neuroprotective effects in the injured spinal cord (De Nicola et al., 2009; Gonzalez et al., 2004; Labombarda et al., 2011, 2009, 2006a, 2002, 2000a). Rats treated with progesterone after spinal cord contusion show better locomotor activity and less tissue and white matter damage than control animals (Thomas et al., 1999). Spinal cord trauma leads to neuronal degeneration, astrogliosis, demyelination, and proliferation of oligodendrocyte precursor cells. Motoneurons present several abnormalities after spinal cord injury (SCI), and we have demonstrated that some genes become stimulated by progesterone in the injured spinal cord. Thus, after complete transaction of the spinal cord, progesterone treatment restores choline acetyltransferase (ChAT) levels, normalizes the expression of Na,K-ATPase and increases GAP-43 and BDNF expression (De Nicola et al., 2009; Gonzalez et al., 2004; Labombarda et al., 2002).

Progesterone has different signaling mechanisms which offer exciting possibilities for the development of specific treatments and new pharmacological trials. Indeed, progesterone may: 1) regulate gene transcription after binding to selective intracellular progesterone receptors (PR) which belong to a super-family of zing finger transcription factors; 2) activate signaling cascades via...
specific membrane receptors (Losel et al., 2003; Mani, 2006; Petrus et al., 2005) and 1 modulate GABA_B receptor activity via its metabolite allopregnanolone (Bellesi and Lambert, 2005; Hosie et al., 2006). We have demonstrated that the so-called classical intracellular progesterone receptors (PR), the putative membrane progesterone receptor Pgmr1 (Labombarda et al., 2000b, 2003) and the membrane receptors mPRs (Labombarda et al., 2010) are all expressed in the spinal cord. Furthermore, progesterone can be converted within the spinal cord to its reduced metabolites 5α-dihydroprogesterone (5α-DHP) and allopregnanolone (Labombarda et al., 2006b; Patte-Mensah et al., 2006; Patte-Mensah and Mensah-Nyagan, 2008). The latter is a potent positive modulator of GABA_B receptor activity (Bellesi and Lambert, 2005; Hosie et al., 2006). Thus, in common with other regions of the central nervous system, progesterone actions in the spinal cord may involve multiple signaling mechanisms. Elucidating the respective involvement of these different mechanisms would bring new insights into the neuroprotective effects of progesterone.

Growing experimental evidence has shown a beneficial influence of allopregnanolone on neuron viability after brain injury or in neurodegenerative conditions (Melcangi et al., 2008; Melcangi and Mensah-Nyagan, 2006; Melcangi and Garcia-Segura, 2010; Liu and Díaz Brinton, 2011). Indeed, allopregnanolone reverses neurogenic and cognitive deficits in a mouse model of Alzheimer's disease (Wang et al., 2010; Singh et al., 2012). Niemann—Pick type C disease can be blocked by appropriately timed treatment with allopregnanolone (Griffin et al., 2004). Therapy with this neurosteroid is also efficient after traumatic brain injury (Djebali et al., 2004; He et al., 2004) after cerebral ischemia (Sayeed et al., 2006; Patte-Mensah et al., 2006; Patte-Mensah and Mensah-Nyagan, 2008). The latter is a potent positive modulator of GABA_B receptor activity (Bellesi and Lambert, 2005; Hosie et al., 2006). Thus, in common with other regions of the central nervous system, progesterone actions in the spinal cord may involve multiple signaling mechanisms. Elucidating the respective involvement of these different mechanisms would bring new insights into the neuroprotective effects of progesterone.

The viability of cultured slices was assessed using vital staining with the tetrazolium dye MTT (Boeringer Mannheim). This translucent yellow dye is reduced by active mitochondria and other cellular enzymes. It forms a purple precipitate that accumulates within the cytoplasm of living cells and can be visualized under light microscopy (Abe and Matsuki, 2000). Nuclear staining was assessed using DAPI (Fisher Scientific) and SYTOX13 (Molecular Probes), two cell-permeant acid stains that show a large fluorescence enhancement upon binding to nucleic acid.

2.3. Cytoarchitecture of organotypic spinal cord slice cultures

Slices were washed in phosphate buffer saline (PBS), pH 7.4 and then fixed in 4% paraformaldehyde in phosphate buffer (0.1 M, pH 7.4) for 1 h at room temperature. Slices were then removed from the Millicell and processed for immunocytochemistry. Slices were incubated for 1 h in PBS 0.1 M (pH 7.4) containing 0.25% Triton-X, 0.2% gelatin, 0.1% sodium azide (PBGS TA) and lysis (0.1 M), before the overnight incubation with the primary antibodies. The following primary antibodies were used: (a) monoclonal antibody against neuronal nuclei NeuN (1/1000; Chemicon) and (b) monoclonal antibody against Neurofilament 200 (1/1000; Sigma) was used to identify axons; (c) rabbit polyclonal antibody against glial fibrillary acidic protein (GFAP, 1/1000; Sigma) was used to identify astrocytes and (d) monoclonal antibody against myelin basic protein (MBP, 1/1000; Boehringer Mannheim) to visualize myelin. The following secondary antibodies were used: goat anti-rabbit and goat anti-mouse Alexa Fluor (1/1000; Molecular Probes, Leiden, Netherlands). After 2 h incubation, slices were washed several times in PBS, mounted with Fluoromount (Clinisciences, France) and analyzed using a confocal Zeiss LSM 510 (Carl Zeiss Inc) image analyzing system.

2.4. In vitro SCI and drug treatments (Fig. 1)

SCI was elicited using a weight drop model of injury. An impactor with weight of 0.2 g was dropped from 1.7 cm onto the center of the culture slice (Krasnokouei et al., 2002). Following the injury, slices were placed back in the incubator for three days until DIV0. (Fig. 1). Slices were incubated in ethanol and added to the medium at the time of the injury and maintained during three days. Based on our previous study (Ghoumari et al., 2003) progesterone (PROG), 5α-DHP and allopregnanolone were used at the concentration of 10 μM. The final concentration of ethanol in the medium was 0.1%. Finasteride was dissolved in DMSO and was used at 50 μM based on a previous work (Keller et al., 2004) and was applied 15 min before SCI. Gabazine 200 (1/1000; Sigma) and meninges were removed. The spinal cord was cut into 350 μm thick slices using a McIlwain tissue chopper to generate the organotypic slice cultures. Only sections from the lumbar spinal cord were used. Spinal slices were transferred onto membranes of 30-mm Millipore culture inserts with 0.4 μm pore size (Millipelle, Millipore, Bedford, MA, USA). The inserts were placed into wells of six-well plate containing 1 ml of antibiotic-free medium containing 50% MEM with Earl's salt and glutamine. 25% Hanks balanced salt solution, and 25% horse serum supplemented with 20 mM of Hepes acid-salt and 3-glucose (6 mg/ml) (Gibco-BRL). Slices were cultured on top of the membranes and were not immersed in the culture medium. To ensure the optimum viability of the cultures, 5 slices were plated per Millicell (krassioukov 2002). Following the injury, slices were placed back in the incubator for three days

Please cite this article in press as: Labombarda, F., et al., Neuroprotection by steroids after neurotrauma in organotypic spinal cord slice cultures: A key role for progesterone receptors and steroidal modulators of GABA_B receptors, Neuropharmacology (2013), http://dx.doi.org/10.1016/j.neuropharm.2013.03.010
was dissolved in PBS and was used at 5 μM, a dose which has been shown to block GABA_A receptors (Ueno et al., 1997) and was applied 15 min before SCI. Measurements and quantifications were done in different groups of organotypic spinal cord slices: (a) without injury (CTR), (b) with an in vitro injury (SCI), (c) treated with progesterone (SCI + PROG), or (d) with 5α-DHP (SCI + DHP), or (e) with allopregnanolone (SCI + Allo) at the time of injury. The effect of the inhibition of S_a-reductase was evaluated in two groups of organotypic spinal cord slices treated with: (a) progesterone and finasteride (SCI + PROG + FIN), or (b) finasteride alone (SCI + FIN). Gabazine was used in association with allopregnanolone (SCI + Allo + G2). CTL and SCI groups received the same amount of vehicle as treated groups.

2.5. Assessment of cell death

2.5.1. Propidium iodide (PI) uptake

Cell viability was determined by PI exclusion. When cell membranes are damaged PI enters and binds nucleic acids. At time of the injury 5 μM of PI (Molecular Probes) was added to the cultures and incubated for 3 days. Under these conditions, PI has been shown to be non toxic and has been used to ascertain the extent of cell death (Mackis and Marxson, 1990). At DIV 2, as in Fig. 1, slices were fixed and PI fluorescence emission was captured using a Confocal Zeiss LSM 510 (Carl Zeiss Inc) image analyzing system. The bound form of PI shows increased emission at 635 nm when excited at 540 nm.

2.5.2. Lactic acid dehydrogenase (LDH) measurements

LDH is a rapidly released enzyme into the culture medium upon damage of the plasma membrane. LDH, therefore, is the most widely used marker for cytotoxicity. LDH levels were determined using a standard assay (Tox-7, Sigma Chemical, St. Louis, MO) which was performed according to the manufacturer’s instructions. Cell death was expressed as a ratio of LDH release in cell culture supernatants to total LDH (Yos et al., 2000).

2.5.3. Quantitative analysis of immunocytochemistry and PI uptake

2.5.4. Steroid measurements

Steroids were extracted from the medium and from the organotypic slices and measured by gas chromatography-mass spectrometry (GC/MS) (Liere et al., 2000) which was already used for steroid measurements after in vivo spinal cord injury (Labombarda et al., 2006b). Briefly, steroids were extracted overnight from 10 organotypic spinal cord slices from male mice (weight of 1 slice = 1173 ± 0.01 mg) or from the medium by using a Sep-Pak C18 cartridge. The steroids (19α-nor-PROG and 19α/β-5α-DHP) were derivatized with a mixture of a solution of heptfluorobutyric anhydride (HFBA) and ethidium bromide (EtBr) (1000:2,5, v/w/v). The other fraction, containing PROG and 3α/5α-THP were derivatized with heptfluorobutyric anhydride (HFBa).

2.5.5. Statistical analysis

The statistical analysis was performed with GraphPad Prism 4.0. Data are expressed as the mean ± standard error of the mean (SEM) and n refers to the number of animal studied. n = 6 for each experimental group. Results were analyzed by one-way ANOVA followed by post-hoc Newman-Keuls test. Results of measurements of steroids by GC/MS were analyzed by Student’s t-test for comparing levels between SCI + PROG and SCI + PROG + FIN groups. Statistical significance was established at p < 0.05.

3. Results

3.1. Characterization and viability of the organotypic slices cultures of spinal cords from young mice

Organotypic spinal slice cultures were successfully set up using the interface method developed by Stoppini et al. (1991) with culture medium modifications that increase viability of the spinal cord. Slices were treated from 3 to 10-weeks-old mice (C57BL/6) were tested for their suitability to generate the organotypic slices cultures. Slices from 3 weeks-old mice gave the best results: ease in the meningioma removal, spinal cord sectioning, culture viability and well-preserved gross organotypic morphology, including identifiable dorsal and ventral grey regions and central canal. Thus, for all the subsequent experiments, 3 weeks-old mice were used. Spinal cord organotypic slices were successfully cultured for 10 days, explants were observed in a daily basis using phase contrast microscopy. Spinal cord cultures prepared in this way maintain an excellent morphology, facilitating the identification of neuronal populations using conventional light microscopy. Slices spontaneously attach to the filter supports and flatten to less than 100 μm in thickness from the original starting thickness of 350 μm. Assessment of cell death was performed using LDH activity at different times after culturing (DIV1, DIV3, DIV7, DIV10). The ratio of LDH release/Total LDH is an index which reflects the cell death. This ratio was high at DIV1 and DIV3 and decreased at DIV7 and DIV10 (Fig. 2A, p < 0.001 DIV7 versus DIV1 and DIV10 versus DIV1). This death during the first days of the culture is a typical response to axotomy and tissue slicing. Therefore, organotypic spinal cord cultures were allowed a 7-days recovery period after preparation, before performing SCI and pharmacological treatments. Assessment of cellular viability of cultured slices was performed at DIV7 using vital staining with MITT, DAPI and Sytoxgreen 13, were used for quick observation of cell nuclei in the cultured slices. Intense nuclear staining and the absence of apoptotic features were observed with these two nuclear markers (Data not shown). The identification of neurons, axons, astrocytes and myelin in organotypic spinal cord slice cultures at DIV7 was done by immunofluorescence (Fig. 2B). Neun immunoreactivity was observed in a typical butterfly-shaped grey matter with clearly labeled neurons. NF 200 immunoreactivity was observed in several neurites. GFAP⁺ cells showing multiple processes typical of astrocyte morphology was observed in the white and grey matters. MBP immunoreactivity was observed in oligodendrocyte cells bodies and processes.

3.2. Progesterone had no effects on PI⁺ and Neun⁺ cell number in control (non-injured) organotypic spinal cord slice cultures

Slices were treated during 3 days between DIV7 and DIV10, and the effects of progesterone and vehicle (EtOH) were examined on: 1) cell death assessed by counting the number of PI⁺ cells in lamina IX, and 2) the number of motoneurons by counting Neun⁺ cells in lamina IX with a nucleus diameter greater than 5 μm. There was neither a toxic nor a protective effect of progesterone or EtOH, as neither a toxic nor a protective effect of progesterone or EtOH, as neither a toxic nor a protective effect of progesterone or EtOH, as neither a toxic nor a protective effect of progesterone or EtOH, as neither a toxic nor a protective effect of progesterone or EtOH, as neither a toxic nor a protective effect of progesterone or EtOH, as neither a toxic nor a protective effect of progesterone or EtOH, as neither a toxic nor a protective effect of progesterone or EtOH, as neither a toxic nor a protective effect of progesterone or EtOH, as neither a toxic nor a protective effect of progesterone or EtOH, as neither a toxic nor a protective effect of progesterone or EtOH, as neither a toxic nor a protective effect of progesterone or EtOH, as neither a toxic nor a protective effect of progesterone or EtOH, as neither a toxic nor a protective effect of progesterone or EtOH, as neither a toxic nor a protective effect of progesterone or EtOH, as neither a toxic nor a protective effect of progesterone or EtOH, as neither a toxic nor a protective effect of progesterone or EtOH, as neither a toxic nor a protective effect of progesterone or EtOH, as neither a toxic nor a protective effect of progesterone or EtOH, as neither a toxic nor a protective effect of progesterone or EtOH, as neither a toxic nor a protective effect of progesterone or EtOH, as neither a toxic nor a protective effect of progesterone or EtOH, as neither a toxic nor a protective effect of progesterone or EtOH, as neither a toxic nor a protective effect of progesterone or EtOH, as neither a toxic nor a protective effect of progesterone or EtOH, as neither a toxic nor a protective effect of progesterone or EtOH, as neither a toxic nor a protective effect of progesterone or EtOH, as neither a toxic nor a protective effect of progesterone or EtOH, as neither a toxic nor a protective effect of progesterone or EtOH, as neither a toxic nor a protective effect of progesterone or EtOH, as neither a toxic nor a protective effect of progesterone or EtOH, as neither a toxic nor a protective effect of progesterone or EtOH, as neither a toxic nor a protective effect of progesterone or EtOH, as neither a toxic nor a protective effect of progesterone or EtOH, as neither a toxic nor a protective effect of progesterone or EtOH, as neither a toxic nor a protective effect of progesterone or EtOH, as neither a toxic nor a protective effect of progesterone or EtOH, as neither a toxic nor a protective effect of progesterone or EtOH, as neither a toxic nor a protective effect of progesterone or EtOH. To study the effects of SCI and treatment by progesterone and its reduced metabolites, organotypic spinal cord cultures were injured

Please cite this article in press as: Labombarda, F., et al., Neuroprotection by steroids after neurotrauma in organotypic spinal cord cultures: A key role for progesterone receptors and steroid modulators of GABA_A receptors, Neuropharmacology (2013), http://dx.doi.org/10.1016/j.neuropharm.2013.03.010.
and treated by one of the steroids (10 μM) at DIV7 and the effects were analyzed at DIV10. SCI induced membrane damage and cell death as shown by the increase in the ratio of LDH release/Total LDH (Fig. 3A, p < 0.01 SCI versus CTL). Progesterone treatment decreased the ratio of LDH release/Total LDH (Fig. 3A, p < 0.01 SCI + PROG versus SCI). Treatments with 5α-DHP or with allopregnanolone also decreased the ratio of LDH release/Total LDH (Fig. 3A, p < 0.01 SCI versus CTL), whereas PROG, 5α-DHP, or Allo (10 μM) treatments dumped this increase (### p < 0.01 SCI + PROG versus SCI, ## p < 0.01 SCI + 5α-DHP versus SCI, # p < 0.01 SCI + Allo versus SCI). B) Finasteride did not block the progesterone effect. Progesterone alone decreased the ratio of LDH release/Total LDH (### p < 0.01 SCI + PROG versus SCI). Treatment with Finasteride (FIN), in association with progesterone also decreased the LDH/Total LDH ratio in the injured spinal cord slices (### p < 0.001 SCI + PROG + FIN versus SCI). FIN alone was without effect. Data represent means ± s.e.m., n = 6 per group.

3.4. The neuroprotective effect of progesterone does not require its 5α-reduction

As 5α-DHP and allopregnanolone were neuroprotective when added to the culture medium, we wondered if the neuroprotective effect of progesterone treatment was due to its bioconversion to 5α-DHP and allopregnanolone. To test this hypothesis, we used finasteride, a 5α-reductase inhibitor. Similar ratios of LDH release/Total LDH were observed after treatment of the injured slices with progesterone alone or in association with finasteride (Fig. 3B, p < 0.01 SCI + PROG and SCI + PROG + FIN versus SCI). We then measured steroid levels by GC/MS and showed that progesterone was not bioconverted to its 5α-reduced metabolites in this in vitro system. Indeed, treatment with progesterone produced high levels of progesterone in the spinal cord slices, but levels of 5α-DHP, allopregnanolone and isoallopregnanolone (3β,5α-tetrahydroprogesterone) were below the detection limit of the GC/MS system. Indeed, treatment with progesterone produced high levels of progesterone in the spinal cord slices, but levels of 5α-DHP, allopregnanolone and isoallopregnanolone (3β,5α-tetrahydroprogesterone) were below the detection limit of the GC/MS system.

Please cite this article in press as: Labombarda, F., et al., Neuroprotection by steroids after neurotrauma in organotypic spinal cord cultures: A key role for progesterone receptors and steroidal modulators of GABA_A receptors, Neuropharmacology (2013), http://dx.doi.org/10.1016/j.neuropharm.2013.03.010
analysis. In addition, treatment with progesterone plus finasteride achieved similar levels of progesterone in the spinal cord as with progesterone alone, but as expected, 5α-DHP or allopregnanolone or isoallopregnanolone were not detected in the slices or in the medium in the SCI + PROG + finasteride group (Table 2).

3.5. The neuroprotective effects of progesterone require the intracellular PR

To study the role of nuclear progesterone receptors (PR) in mediating the neuroprotective effects of progesterone, we prepared organotypic spinal cord cultures from wild type PR+/- mice and from knockout PR-/- mice. In slice cultures from wild type PR+/-, SCI increased the number of dying cells as shown by the counting the number of PI+ cells (Fig. 4A, p < 0.05 SCI versus CTL) and progesterone treatment decreased the number of PI+ cells (Fig. 4A, p < 0.01 SCI + PROG versus SCI). The ratio of LDH release/Total LDH increased after SCI (Fig. 4C, p < 0.001 SCI versus CTL) and progesterone treatment decreased it (Fig. 4C, p < 0.001 SCI + PROG versus SCI). SCI induced a reduction of NeuN+ motoneurons (Fig. 4E, p < 0.05 SCI versus CTL). In the presence of progesterone NeuN+ cells were significantly replenished (Fig. 4E and G, p < 0.01 SCI + PROG versus SCI). The neuroprotective effects of progesterone treatment observed in wild type PR+/- (Fig. 4A, C, E and G) could not be observed in PR-/- mice (Fig. 4B, D, F and H) as shown by counting of PI+ cells (Fig. 4B, p < 0.05 SCI versus CTL and p < 0.01 SCI + PROG versus CTL), measurement of LDH release (Fig. 4D, p < 0.01 SCI versus CTL and SCI + PROG versus CTL), and NeuN+ cell counting (Fig. 4F and H, p < 0.01 SCI versus CTL and SCI + PROG versus SCI). No statistically significant differences were observed between SCI and SCI + PROG-treated slices for the 3 parameters studied in PR-/- mice.

3.6. The neuroprotective effects of allopregnanolone involve GABA_A receptors

Allopregnanolone does not bind to PR, but it is a well known positive modulator of GABA_A receptors. To determine whether the effect of allopregnanolone on LDH release are dependent on GABA_A receptors, we incubated spinal cord slices from wild type PR+/- mice with 10 μM of the steroid in the presence or absence of the selective GABA_A receptor antagonist Gabazine (5 μM). Treatment with Gabazine alone had no effect on the ratio of LDH release/Total LDH (CTL 100% ± 15; SCI 213% ± 19; SCI + G283% ± 42). No statistically significant difference was observed between SCI and SCI + G2 treated slices. However, the association of Gabazine with Allo, prevented the allopregnanolone protective effect as shown by the significant differences in the ratios of LDH release/Total LDH (SCI 230% ± 19; SCI + Allo 115.9% ± 18; SCI + Allo + G278% ± 48; p < 0.05 SCI versus SCI + Allo and SCI + Allo versus SCI + Allo + G2).

Table 2

<table>
<thead>
<tr>
<th>Treatments</th>
<th>PROG</th>
<th>5α-DHP</th>
<th>Allo</th>
<th>3α,5α-TTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCI + PROG</td>
<td>Slices (ng/mg)</td>
<td>13.83 ± 1.11</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Medium (ng/ml)</td>
<td>578.03 ± 32.87</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>SCI + PROG + FIN</td>
<td>Slices (ng/mg)</td>
<td>13.64 ± 1.16</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Medium (ng/ml)</td>
<td>575.18 ± 44.35</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>5α-DHP: 5α-dihydroprogesterone. Allo: allopregnanolone (3α,5α-tetrahydropregesterone). 3α,5α-TTH: 3α,5α-tetrahydroprogesterone. FIN: Finasteride. nd: not detected.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As allopregnanolone can be converted back to 5α-DHP, which then interacts with PR and activates gene transcription and regulates neuronal functions (Rupprecht et al., 1993, 1996) we checked whether there may be a contributory role of PR in mediating the effects of allopregnanolone. If the protective effects of allopregnanolone are mediated via its conversion to PR-active 5α-DHP, they should no longer be observed in Pr−/− mice. To test this possibility, we use organotypic slices from Pr−/− mice. Fig. 5 shows that allopregnanolone is neuroprotective in Pr−/− mice. Indeed, allopregnanolone decreased the ratio of LDH release to Total LDH, and Gabazine inhibited the effect of allopregnanolone (Fig. 5A, p < 0.01 SCI + Allo versus SCI and p < 0.01 SCI + Allo + G2 versus SCI + Allo). The effects of allopregnanolone on cell death were also analyzed by counting the number of PI+ cells and NeuN+ cells in Pr−/− mice. Allopregnanolone decreased the number of PI+ cells and Gabazine inhibited the allopregnanolone effect (Fig. 5B, p < 0.001 SCI + Allo versus SCI and p < 0.001 SCI + Allo + G2 versus SCI + Allo). Gabazine inhibited also the increased number of NeuN+ cells induced by allopregnanolone (Fig. 5C–D, p < 0.001 SCI + Allo versus SCI and p < 0.001 SCI + Allo + G2 versus SCI + Allo).

4. Discussion

We show in this study that treatment with progesterone or its derivatives, 5α-DHP and allopregnanolone, protects against the loss of membrane integrity and against motoneuron death in injured organotypic spinal cord cultures from young mice. The neuroprotective effects of progesterone required PR and did not involve the biocconversion of progesterone to its 5α-reduced metabolites within the spinal slices. The neuroprotective effect of allopregnanolone involved GABA_A receptors.

4.1. Advantages of the organotypic spinal cord slices cultures from young mice for studying neuroprotective mechanisms

Organotypic spinal cord cultures offer advantages over dissociated cultures in that they preserve the synaptic and anatomical organization of the neuronal circuitry and have functional characteristics similar to those found in vivo (Galwiler et al., 1997). We examined the effects of an in vitro injury and steroid treatment on organotypic slices derived from young mice. We tested the feasibility of the cultures using mice of different ages between 3 and 10 postnatal weeks. 3 weeks old mice gave the best results. The in vitro injury model by weight-dropping technique presents a system for identification of major cellular mechanisms of SCI and is well suited to address the mechanisms by which progesterone and allopregnanolone bring neuroprotection. Thus, such a model system can be exploited to investigate the effects of different drugs that may be interesting for developing treatment strategies for SCI.

4.2. Neuroprotective effects of progesterone require the expression of the nuclear progesterone receptors (PR)

Progesterone has no effects in control spinal cords without injury, and was robustly neuroprotective after injury in this in vitro model, as it has been shown previously in vivo after spinal cord transection (De Nicola et al., 2009). In the injured spinal cord slice cultures, progesterone decreased LDH release, reflecting a decrease in membrane damage and increased membrane integrity. Membrane damage due to the initial traumatic event can be responsible for the initiation of the delayed pathological events and cell death after traumatic injury. The loss of membrane integrity triggers many downstream events resulting in secondary cellular damage. Thus, cells that do not die acutely may nevertheless go on to enter apoptosis. Repairing the initial membrane damage caused...
Fig. 4. Progesterone neuroprotective effect is PR dependent: Progesterone is neuroprotective in PR$$^+$$/$$^+$$ mice (A, C, E, G). A) Quantification of PI$$^+$$ cells density in lamina IX. SCI induced an increase in the number of PI$$^+$$ cells ($*$ p < 0.05 SCI versus CTL), whereas PROG (10$$^\mu$$M) prevented this increase (## p < 0.01 SCI + PROG versus SCI). C) LDH measurements. SCI induced an increase in LDH/Total LDH ratio (*** p < 0.001 SCI versus control), whereas PROG dumped this increase (### p < 0.001 SCI + PROG versus SCI). E) Quantification of NeuN$$^+$$ cells/90000$$^\mu$$m2. SCI induced a decrease in NeuN$$^+$$ cells (## p < 0.01 SCI versus CTL), whereas PROG reversed this effect (** p < 0.01 SCI + PROG versus SCI).
by trauma not only rescues the cells from acute cellular death but could also block the secondary cascades leading to delayed cell death. Direct count of motoneurons showed that treatment by progesterone of the injured spinal cord cultures which had lost 60% of their motoneurons by SCI increased the number of large NeuN+ cells. These data demonstrated that the neuroprotective effect of progesterone reflects significantly enhanced motoneuron survival.

Progesterone may act through several mechanisms. In rat Purkinje cell cerebellar cultures progesterone has been shown to be protective against oxygen–glucose deprivation through potentiation of GABAergic receptor activity indirectly by its metabolites, such as allopregnanolone (Ardeshiri et al., 2006). Our data concerning the measurements of progesterone and its derivatives in both the spinal cord slices and the medium after treatment with progesterone and progesterone + finasteride had shown that large amounts of progesterone were achieved in the tissue (≈14 ng/mg) but progesterone was not bioconverted to 5α-DHP nor to allopregnanolone demonstrating that the neuroprotective effects of progesterone in spinal cord cultures were not due to its bioconverted metabolites but rather to progesterone itself.

Progesterone can activate nuclear progesterone receptors or membrane progesterone receptors. Our results using knockout PR−/− mice, clearly demonstrate that the nuclear progesterone receptors play a pivotal role in the mediation of the neuroprotective effects of progesterone at least concerning membrane damage and motoneurons survival. Our data support a relevant role of progesterone in neuroprotection independently from its bioconversion to allopregnanolone and point to the intracellular receptors PR as a target for pharmacological treatments after spinal cord injury. PR seem to be important mediators of neuroprotection after the nervous system injuries, indeed, we have recently shown that PR are direct key targets for both endogenous neuroprotection and for therapeutic strategies after stroke (Liu et al., 2012). However, in other models of neurodegeneration, progesterone metabolism participates to the neuroprotective effect of the hormone. Thus, in an in vivo experimental model of excitotoxic cell death, progesterone administration increased the levels of 5α-DHP and allopregnanolone in plasma and hippocampus and prevented kainic-acid-induced neuronal loss. The administration of the 5α-reductase inhibitor finasteride abolished the neuroprotective effect of progesterone suggesting that progesterone metabolism to its reduced derivatives is necessary for the neuroprotective mechanism of progesterone against excitotoxic neuronal death (Ciriza et al., 2006). More recently, Išihara et al. have shown that allopregnanolone converted from progesterone in hippocampal slices could protect neurons from tributyltin-induced neurotoxicity by a GABAA receptor dependent mechanism (Išihara et al., 2012).

4.3. Neuroprotective effects of allopregnanolone involve the modulation of GABAergic receptors

Allopregnanolone has been shown to be neuroprotective in different animal models such as traumatic brain injury, ischemia, and neurodegenerative diseases (Dbzali et al., 2004; Sayeed et al., 2006; Sayeed and Stein, 2009; Griffin et al., 2004; Wang et al., 2010; Singh et al., 2012; Melcangi and Mensah-Nyagan, 2006; Liu and Díaz Brinton, 2011).

We show here for the first time that 5α-DHP and allopregnanolone are neuroprotective in the injured spinal cord. At the dose tested, 5α-DHP and allopregnanolone were as efficient as progesterone in decreasing membrane damage and preventing neuronal death, and they may thus represent potential therapeutic agents for treatments of SCI. Our results showed that allopregnanolone effects are mediated by GABAA receptors, thus drugs targeting GABAA receptors should also be evaluated for their neuroprotective effects in spinal cord injury. The treatment with GABAA receptor modulators such as the neuroactive steroids may be useful for preventing neurodegeneration after spinal cord injury and may represent a novel neuroprotective strategy. Coordinated balance of inhibitory and excitatory neurotransmission, mediated respectively by GABAA and glutamate receptors, controls neuronal communication for the normal nervous system function (Dingledine et al., 1999; Mehta and Ticku, 1989). However, after spinal cord injury there is a profound shift of the balance in the direction of overexcitiation due to the excess release of excitatory amino acids and hypofunction of GABAergic tone (Gwak and Hulsebosch, 2011). Our data provide evidence suggesting that allopregnanolone by potentiating GABAA receptors may lead to an anti-excitotoxic effect which protects neurons from death after spinal cord injury.

4.4. Translational perspectives/therapeutic options

Studies using progesterone are more advanced than those using allopregnanolone. Indeed, we have shown using an in vivo experimental spinal cord injury model that molecular markers of functional motoneurons become impaired, including brain-derived neurotrophic factor mRNA, Na+, K-ATPase mRNA, metabotrope-associated protein 2 and choline acetyltransferase. Progesterone treatment restores the expression of these molecules. Spinal cord injury also causes oligodendrocyte loss and demyelination. A short progesterone treatment enhances proliferation and differentiation of oligodendrocyte progenitors into mature myelin-producing cells, whereas prolonged treatment increases a transcription factor (Olig1) needed to repair the injury-induced demyelination (De Nicola et al., 2009). Similar data are still needed to screen the in vivo neuroprotective potency of allopregnanolone after spinal cord injury.

Progesterone is used in a number of clinical applications. Extensive studies have been conducted to evaluate its safety for clinical use (Goletiani et al., 2007). Progesterone is receiving much attention as a neuroprotective agent and is making its way into neurological practice. Indeed, two phase II trials have already assessed the safety and beneficial effects of progesterone after traumatic brain injury (Stein, 2013), and their encouraging outcomes have spurred the launching of two large phase III multicenter trials (Protect III, 2011, at http://www.clinicaltrials.gov/NCT00822900 and SyNAPSe, 2011, at http://www.synapse-trial.com). The evaluation of safety and efficacy of allopregnanolone in humans is still lacking.

Multiple therapeutic approaches remain to be further explored for promoting spinal cord repair after SCI with progestagen. The administration of progesterone or allopregnanolone is an interesting option. Important issues should be addressed: 1) the best

NeuN+ cells density in lamina IX. SCI induced a decrease in NeuN+ cell density (p < 0.05 SCI versus CTL) whereas PROG induced an increase in NeuN+ cell density (###p < 0.01 SCI + PROG versus SCI). C) Representative confocal microscopic views of NeuN immunofluorescence staining in lamina IX showing a decrease in NeuN+ cell density after SCI and an increase after PROG treatment. Scale bars: 20 μm. Data represent means ± s.e.m., n = 6 per group. Progesterone is not neuroprotective in knockout PR−/− mice (B, D, F, H, I, B). K) Quantification of PI+ cells density in lamina IX. SCI induced an increase in the number of PI+ cells (p < 0.05 SCI versus CTL) and PROG (10 μM) did not prevent this increase (###p < 0.01 SCI + PROG versus CTL). D) SCI induced an increase in LDH/Total LDH ratio (###p < 0.01 SCI versus CTL), and PROG (10 μM) treatment did not prevent this increase (##p < 0.01 SCI + PROG versus CTL). F) Quantification of NeuN+ cells density in lamina IX. SCI induced a decrease in NeuN+ cell density (###p < 0.01 SCI versus CTL) and PROG (10 μM) did not prevent this decrease (###p < 0.01 SCI + PROG versus CTL). H) Representative confocal microscopic views of NeuN immunofluorescence staining in lamina IX showing a decrease in NeuN+ cell density after SCI PROG (10 μM) did not prevent this decrease. Scale bars: 20 μm. Data represent means ± s.e.m., n = 6 per group.
formulations (natural, micronized natural and synthetic). 2 The choice of the mode of administration which gives a great bioavailability, a long half-life and which allows these neuroactive steroids to reach the spinal cord prior to their metabolism by the liver. 3 Dosing regimens. Stimulating the biosynthesis of endogenous progesterone and/or allopregnanolone in the spinal cord offers another therapeutic option which deserves particular attention.

Spinal cord injury is an extremely important issue for its devastating consequences and for the limited capacity of regeneration exhibited by the adult central nervous system. Finding and designing drugs that may help restoring the missing functions is a crucial objective of neuropharmacological research. For spinal cord injury, human studies are still lacking for both progesterone and allopregnanolone. Progesterone may be the pleitropic candidate drug that can markedly attenuate the complex injury cascade after spinal cord injury. Allopregnanolone may represent an alternative strategy which targets specifically GABA \(_A\) receptors. A careful evaluation of the potential of these two neurosteroids as neuroprotective agents after spinal cord injury is needed.

In conclusion, our study shows that both steroids, progesterone and allopregnanolone, are neuroprotective after spinal cord injury. The intracellular progesterone receptors (PR) are key targets for neuroprotection by progesterone. In addition, the modulation of...
GABA_B receptors by the neuroactive steroid allopregnanolone might represent an alternative therapeutic approach. Therefore, molecules targeting progesterone receptors or modulating GABA_B receptors should be considered for the promotion of recovery after spinal cord injury.

Competing interests
FL, AG, PL, AFDN, MS and RG have nothing to disclose.

Acknowledgments
This work was partly supported by funds from AFM (RAE060311LA) and a cooperative program between the Governments of France and Argentina (INSERM/CONICET). FL was supported by INSERM and by a post-doctoral research fellowship from “la Fondation pour la Recherche Médicale” (FRM). We are grateful to Dr J. Lydon for providing heterozygous breeder pairs of PRlac_z mice to establish the colony in our animal facility. We thank the excellent technical assistance of B. Delespierre for mice genotyping; and B. Eychenne, A. Pianos and A. Cambourg for steroid measurement by GC/MS.

References

