Journal of Food Science, First published: 19 January 2023, 2023
Abstract
The aim of this work is to produce bioactive films suitable for aerobic packaging applications by combining the bioactivity of Spirulina platensis protein concentrate (PC; 1% and 2% w/w), the sustainable nature of bovine gelatin (Ge), and sodium alginate dialdehyde (ADA, 5% w/w) as Schiff base crosslinking agent. PC was obtained by an optimized acid–base extraction process and characterized. PC showed a dose-dependent radical scavenging activity (RSA; IC50 = 24.3 mg/L) related to its high content of C-phycocyanin and total phenolic compounds (32.44 ± 1.37 mg gallic acid equivalents per gram of PC). As a general trend, crosslinking decreased the water solubility, improved mechanical properties, and helped improve RSA of Ge–ADA–PC films. Ge–5ADA–2PC film recorded best compromise between solubility (only 33.6%), high UV barrier (0.134% transmittance at 400 nm), reasonable extensibility (217.00 ± 2.34%), tensile strength (3.50 ± 0.43 MPa), water vapor permeability (2.00 ± 0.17 × 10−12 kg·m/m2·Pa·s), and RSA (44.70 ± 2.19%). Wrapping hake fillets in this filmdelayed lipid oxidation during storage under refrigerated conditions for 11 days, maintaining the thiobarbituric acid index below 0.5 mg malonaldehyde/kg muscle. Results suggest that Ge–ADA–PC films have potential as aerobic packaging materials for oxidation-sensitive food.